Telegram Group & Telegram Channel
Как бы вы разработали систему детекции вредоносного контента в соцсетях?

Начнём с того, что нужно определить типы вредоносного контента, которые мы хотим отслеживать: это могут быть хейтспич, угрозы насилия, кибербуллинг и др. Затем важно понять объём контента, который предстоит анализировать (например, сотни миллионов постов в день), и то, какие языки должны поддерживаться.

Важно организовать сбор данных. Посты пользователей могут быть размечены либо автоматически (через пользовательские жалобы), либо вручную с участием модераторов для более точной оценки.

Одним из главных вызовов является разработка мультимодальной модели. Вредоносный контент может быть представлен в разных форматах: текст, изображения, видео, поэтому необходимо эффективно обрабатывать все эти типы данных. Для этого можно использовать методы раннего и позднего слияния данных: либо объединять данные разных типов сразу для единого предсказания, либо обрабатывать их независимо и затем объединять результаты. Для разработки могут использоваться нейронные сети, такие как модели на основе BERT для текстов и модели CLIP для изображений.

Важной частью системы также является возможность объяснить пользователю, почему его контент был помечен как вредоносный. Кроме того, в процессе онлайн-тестирования и развёртывания системы необходимо следить за её эффективностью через метрики, такие как процент вредоносных постов и количество успешных апелляций.

#машинное_обучение



tg-me.com/ds_interview_lib/609
Create:
Last Update:

Как бы вы разработали систему детекции вредоносного контента в соцсетях?

Начнём с того, что нужно определить типы вредоносного контента, которые мы хотим отслеживать: это могут быть хейтспич, угрозы насилия, кибербуллинг и др. Затем важно понять объём контента, который предстоит анализировать (например, сотни миллионов постов в день), и то, какие языки должны поддерживаться.

Важно организовать сбор данных. Посты пользователей могут быть размечены либо автоматически (через пользовательские жалобы), либо вручную с участием модераторов для более точной оценки.

Одним из главных вызовов является разработка мультимодальной модели. Вредоносный контент может быть представлен в разных форматах: текст, изображения, видео, поэтому необходимо эффективно обрабатывать все эти типы данных. Для этого можно использовать методы раннего и позднего слияния данных: либо объединять данные разных типов сразу для единого предсказания, либо обрабатывать их независимо и затем объединять результаты. Для разработки могут использоваться нейронные сети, такие как модели на основе BERT для текстов и модели CLIP для изображений.

Важной частью системы также является возможность объяснить пользователю, почему его контент был помечен как вредоносный. Кроме того, в процессе онлайн-тестирования и развёртывания системы необходимо следить за её эффективностью через метрики, такие как процент вредоносных постов и количество успешных апелляций.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/609

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA